organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2-(4-Chlorobenzoylmethyl)-2H-1,4benzothiazin-3(4H)-one

Ping Zhang,^a Na Du,^b Lan-Zhi Wang^a and Yuan Li^a*

^aCollege of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050016, People's Republic of China, and ^bDepartment of Chemical Engineering, Shijiazhuang Vocational Technology Institute, Shijiazhuang 050081, People's Republic of China

Correspondence e-mail: yuanli@mail.hebtu.edu.cn

Received 28 February 2008; accepted 18 March 2008

Key indicators: single-crystal X-ray study; T = 273 K; mean σ (C–C) = 0.002 Å; R factor = 0.030; wR factor = 0.083; data-to-parameter ratio = 13.4.

The six-membered heterocyclic ring in the title compound, $C_{16}H_{12}CINO_2S$, exists in a conformation intermediate between twist-boat and chair. A one-dimensional chain structure is formed as a result of intermolecular $N-H\cdots O$ and $C-H\cdots O$ hydrogen bonds *via* crystallographic inversion symmetry and translation along the *a* axis.

Related literature

For the synthesis and biological activities of related chalcones and 1,5-benzothiazepines, see: Ansari *et al.* (2005); Pant *et al.* (2006). For microwave-assisted syntheses of related compounds, see: Dandia *et al.* (2002). For further related literature, see: Pant & Chugh (1989); Kirchner & Alexander (1959); Beryozkina *et al.* (2004); Pant *et al.* (1987).

Experimental

Crystal data

 $\begin{array}{l} C_{16}H_{12}\text{CINO}_2\text{S} \\ M_r = 317.78 \\ \text{Triclinic, } P\overline{1} \\ a = 7.7273 \ (19) \text{ Å} \\ b = 8.649 \ (2) \text{ Å} \\ c = 12.298 \ (3) \text{ Å} \\ \alpha = 82.032 \ (3)^\circ \\ \beta = 72.349 \ (2)^\circ \end{array}$

 $\gamma = 68.829 (3)^{\circ}$ $V = 730.0 (3) \text{ Å}^3$ Z = 2Mo K α radiation $\mu = 0.41 \text{ mm}^{-1}$ T = 273 (2) K $0.24 \times 0.20 \times 0.18 \text{ mm}$

Data collection

```
Bruker APEXII CCD area-detector
diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
T_{min} = 0.876, T_{max} = 1.000
(expected range = 0.814–0.929)
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.030$	190 parameters
$wR(F^2) = 0.082$	H-atom parameters constrained
S = 1.06	$\Delta \rho_{\rm max} = 0.18 \text{ e} \text{ Å}^{-3}$
2545 reflections	$\Delta \rho_{\rm min} = -0.27 \text{ e } \text{\AA}^{-3}$

3962 measured reflections

 $R_{\rm int} = 0.009$

2545 independent reflections

2236 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, $^\circ).$

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1 - H1 \cdots O1^{i}$ $C7 - H7 \cdots O2^{ii}$ $C9 - H9A \cdots O1^{iii}$ $C13 - H13 \cdots O1^{iv}$	0.86 0.98 0.97 0.93	2.02 2.54 2.59 2.59	2.8812 (19) 3.443 (2) 3.485 (2) 3.400 (2)	177 152 153 145

Symmetry codes: (i) -x + 1, -y + 2, -z + 1; (ii) -x + 1, -y + 1, -z + 1; (iii) -x, -y + 2, -z + 1; (iv) x - 1, y, z.

Data collection: *APEX2* (Bruker, 1997); cell refinement: *SAINT* (Bruker, 1997); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* and *PLATON* (Spek, 2003).

This work was supported by the Natural Science Foundation of Hebei Province (No. B2007000239), People's Republic of China.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2076).

References

- Ansari, F. L., Umbreen, S., Hussain, L., Makhmoor, T., Nawaz, S. A., Lodhi, M. A., Khan, S. N., Shaheen, F., Choudhary, M. I. & Atta, U. R. (2005). *Chem. Biodivers.*, 2, 487–496.
- Beryozkina, T. V., Kolos, N. N., Orlov, V. D., Zubatyuk, R. I. & Shishkin, O. V. (2004). *Phosphorus Sulfur Silicon*, **179**, 2153–2162.
- Bruker (1997). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Dandia, A., Sati, M. & Loupy, A. (2002). Green Chem. 4, 599-602.
- Kirchner, F. K. & Alexander, E. J. (1959). J. Am. Chem. Soc. 81, 1721–1726.
- Pant, S., Chandra, H., Sharma, P. & Pant, U. C. (2006). *Indian J. Chem. Sect. B*, **45**, 1525–1530.
- Pant, U. C. & Chugh, M. (1989). Indian J. Chem. Sect. B, 28, 435-436.
- Pant, U. C., Gaur, B. S. & Chugh, M. (1987). Indian J. Chem. Sect. B, 26, 947– 950.
- Sheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

supplementary materials

Acta Cryst. (2008). E64, 0746 [doi:10.1107/S1600536808007423]

2-(4-Chlorobenzoylmethyl)-2H-1,4-benzothiazin-3(4H)-one

P. Zhang, N. Du, L.-Z. Wang and Y. Li

Comment

1,5-Benzothiazepine and its derivatives are an important class of bioactive molecules in the field of drugs and pharmaceuticals (Ansari *et al.*, 2005; Pant *et al.*, 2006). The reaction of 2-aminothiophenol with various α , β -unsaturated carbonyl compounds lead to the formation of 1,5-benzothiazepines. We have synthesized some 3-acetyl and 3-alkoxycarbonyl substituted 1,5-benzothiazepines, showing very good activity against fungus candida albicans by the reaction of 2-aminothiophenol with acetylacetone and ethyl acetoacetate. In continuation of our ongoing studies on the synthesis of 4-aryl-2-carboxy-2,3dihydro-1,5-benzothiazepines for various biological activities, we reacted 2-aminothiophenol with β -aroylacrylic acids, but the formation of a seven-membered ring did not occur. Several authors have reported about the 4-aryl-2-carboxy-2,3-dihydro-1,5-benzothiazepine structure for the products of the reaction of 2-aminothiophenol with β -aroylacrylic acids (Pant & Chugh, 1989; Dandia *et al.*, 2002), and others proposed the formation of 1,4-benzothiazin-3-ones (Kirchner & Alexander, 1959; Beryozkina *et al.*, 2004).

So we repeated the experiment for several times and recrystallized the final product again. Upon X-ray diffraction analysis, along with the spectroscopic data we know that 1,4-benzothiazin-3-one was obtained as the only product (Fig. 1). In the crystalline state, the title compound form a one-dimensional chain structure due to intermolecular N—H···O and C—H···O hydrogen bonds *via* crystallographic inversion symmetry and translation along the *a* axis (Table 1). The substituent at atom C7 is equatorially oriented with a torsion angle O1–C8–C7–C9 = 8.3 (2)°. The carbonyl group is slightly turned relative to the chlorophenyl substituent with a torsion angle O2–C10–C11–C16 = 10.8 (2)°. The six-membered heterocycle in the title compound exists in intermediate conformation between twisted boat and chair type.

Experimental

4-(4-chlorophenyl)-4-oxo-2-butenoic acid was prepared by AlCl₃ catalysed treatment of powdered meleic anhydride with chlorobenzene following the general literature procedure. (Pant *et al.*, 1987). 2-Aminothiophenol (2 mmol) and 4-(4-chlorophenyl)-4-oxo-2-butenoic acid (2 mmol) were refluxed with dry ethanol saturated with hydrogen chloride gas. Excess of solvent was concentrated by distillation under reduced pressure and the residue crystallized from methanol to give the title compound as light yellow crystals suitable for X-ray structure determination. Analysis calculated for C₁₆H₁₂ClNO₂S: C 60.47, H 3.81, N 4.41%; found: C 60.45, H 3.80, N 4.40%.

Refinement

All H atoms were placed in calculated positions and constrained to ride on their parent atoms, with C—H distances of 0.93 Å (aryl C) and 0.97–0.98 Å (Csp^3), and N—H distance of 0.86 Å, with all $U_{iso}(H) = 1.2U_{eq}(Csp^2)$.

Figures

Fig. 1. Molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.

$\label{eq:2-(4-Chlorobenzoylmethyl)-2H-1,4-benzothiazin-3(4H)-one$

Crystal data	
C ₁₆ H ₁₂ ClNO ₂ S	Z = 2
$M_r = 317.78$	$F_{000} = 328$
Triclinic, <i>P</i> T	$D_{\rm x} = 1.446 {\rm ~Mg~m}^{-3}$
<i>a</i> = 7.7273 (19) Å	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
b = 8.649 (2) Å	Cell parameters from 2700 reflections
c = 12.298 (3) Å	$\theta = 2.5 - 28.0^{\circ}$
$\alpha = 82.032 \ (3)^{\circ}$	$\mu = 0.41 \text{ mm}^{-1}$
$\beta = 72.349 \ (2)^{\circ}$	T = 273 (2) K
$\gamma = 68.829 \ (3)^{\circ}$	Labellar, colorless
$V = 730.0 (3) \text{ Å}^3$	$0.24 \times 0.20 \times 0.18 \text{ mm}$

Data collection

Bruker APEXII CCD area-detector diffractometer	2545 independent reflections
Radiation source: fine-focus sealed tube	2236 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.009$
T = 273(2) K	$\theta_{\text{max}} = 25.0^{\circ}$
φ and ω scans	$\theta_{\min} = 1.7^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1997)	$h = -9 \rightarrow 9$
$T_{\min} = 0.876, \ T_{\max} = 1.000$	$k = -10 \rightarrow 8$
3962 measured reflections	$l = -14 \rightarrow 14$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.030$	H-atom parameters constrained
$wR(F^2) = 0.082$	$w = 1/[\sigma^2(F_0^2) + (0.0412P)^2 + 0.2045P]$ where $P = (F_0^2 + 2F_c^2)/3$
<i>S</i> = 1.06	$(\Delta/\sigma)_{\rm max} < 0.001$
2545 reflections	$\Delta \rho_{max} = 0.18 \text{ e} \text{ Å}^{-3}$
190 parameters	$\Delta \rho_{\rm min} = -0.27 \text{ e } \text{\AA}^{-3}$

Primary atom site location: structure-invariant direct Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C11	-0.60724 (7)	0.61069 (8)	0.87177 (5)	0.0776 (2)
S1	0.31357 (6)	0.84225 (6)	0.23145 (3)	0.04914 (15)
01	0.30018 (15)	0.92709 (13)	0.52142 (9)	0.0402 (3)
O2	0.28795 (16)	0.57700 (15)	0.57928 (11)	0.0527 (3)
N1	0.54966 (17)	0.90262 (15)	0.36402 (11)	0.0373 (3)
H1	0.5980	0.9498	0.3985	0.045*
C1	0.6460 (2)	0.86774 (18)	0.24884 (13)	0.0363 (3)
C2	0.8326 (2)	0.8708 (2)	0.20508 (15)	0.0474 (4)
H2	0.8953	0.8892	0.2532	0.057*
C3	0.9255 (3)	0.8467 (2)	0.09073 (16)	0.0567 (5)
H3	1.0508	0.8488	0.0619	0.068*
C4	0.8333 (3)	0.8197 (3)	0.01912 (16)	0.0632 (5)
H4	0.8959	0.8043	-0.0582	0.076*
C5	0.6482 (3)	0.8155 (3)	0.06182 (15)	0.0571 (5)
Н5	0.5869	0.7963	0.0132	0.069*
C6	0.5527 (2)	0.8397 (2)	0.17663 (13)	0.0418 (4)
C7	0.3290 (2)	0.75703 (18)	0.37328 (12)	0.0344 (3)
H7	0.4274	0.6463	0.3666	0.041*
C8	0.3893 (2)	0.87005 (17)	0.42642 (12)	0.0327 (3)
C9	0.1349 (2)	0.74330 (18)	0.44118 (12)	0.0353 (3)
H9A	0.0417	0.8540	0.4564	0.042*
H9B	0.0918	0.6900	0.3952	0.042*
C10	0.1384 (2)	0.64667 (18)	0.55313 (13)	0.0361 (3)
C11	-0.0490 (2)	0.63785 (17)	0.63063 (13)	0.0348 (3)
C12	-0.2165 (2)	0.68862 (19)	0.59542 (14)	0.0399 (4)
H12	-0.2133	0.7301	0.5212	0.048*
C13	-0.3878 (2)	0.6784 (2)	0.66903 (15)	0.0448 (4)
H13	-0.4992	0.7119	0.6448	0.054*
C14	-0.3901 (2)	0.6180 (2)	0.77841 (15)	0.0457 (4)
C15	-0.2254 (3)	0.5640 (2)	0.81540 (15)	0.0537 (4)
H15	-0.2293	0.5219	0.8896	0.064*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

C16	-0.0555 (2)	0.5732 (2)	0.74112 (14)	0.0467 (4)
H16	0.0563	0.5357	0.7652	0.056*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0481 (3)	0.1072 (5)	0.0628 (3)	-0.0307 (3)	0.0052 (2)	0.0103 (3)
S1	0.0396 (2)	0.0791 (3)	0.0395 (2)	-0.0307 (2)	-0.01448 (18)	0.0016 (2)
01	0.0368 (6)	0.0468 (6)	0.0402 (6)	-0.0183 (5)	-0.0069 (5)	-0.0085 (5)
02	0.0335 (6)	0.0611 (7)	0.0604 (8)	-0.0122 (5)	-0.0183 (5)	0.0097 (6)
N1	0.0339 (7)	0.0453 (7)	0.0402 (7)	-0.0202 (6)	-0.0103 (5)	-0.0062 (5)
C1	0.0336 (8)	0.0368 (8)	0.0399 (8)	-0.0150 (6)	-0.0090 (6)	0.0000 (6)
C2	0.0380 (9)	0.0573 (10)	0.0510 (10)	-0.0223 (8)	-0.0117 (7)	0.0011 (8)
C3	0.0409 (10)	0.0716 (12)	0.0548 (11)	-0.0273 (9)	-0.0001 (8)	0.0001 (9)
C4	0.0591 (12)	0.0848 (14)	0.0433 (10)	-0.0350 (11)	0.0042 (9)	-0.0065 (9)
C5	0.0593 (11)	0.0816 (13)	0.0404 (9)	-0.0376 (10)	-0.0095 (8)	-0.0051 (9)
C6	0.0378 (9)	0.0499 (9)	0.0403 (8)	-0.0205 (7)	-0.0080 (7)	-0.0003 (7)
C7	0.0299 (7)	0.0368 (8)	0.0389 (8)	-0.0132 (6)	-0.0095 (6)	-0.0036 (6)
C8	0.0284 (7)	0.0329 (7)	0.0381 (8)	-0.0099 (6)	-0.0121 (6)	0.0000 (6)
С9	0.0298 (8)	0.0371 (8)	0.0427 (8)	-0.0144 (6)	-0.0107 (6)	-0.0032 (6)
C10	0.0326 (8)	0.0345 (8)	0.0436 (8)	-0.0118 (6)	-0.0120 (6)	-0.0040 (6)
C11	0.0341 (8)	0.0318 (7)	0.0404 (8)	-0.0122 (6)	-0.0110 (6)	-0.0025 (6)
C12	0.0373 (8)	0.0420 (8)	0.0427 (8)	-0.0169 (7)	-0.0141 (7)	0.0078 (7)
C13	0.0346 (8)	0.0471 (9)	0.0542 (10)	-0.0166 (7)	-0.0147 (7)	0.0070 (7)
C14	0.0375 (9)	0.0491 (9)	0.0457 (9)	-0.0161 (7)	-0.0025 (7)	-0.0021 (7)
C15	0.0521 (11)	0.0704 (12)	0.0363 (9)	-0.0216 (9)	-0.0106 (8)	0.0047 (8)
C16	0.0418 (9)	0.0573 (10)	0.0431 (9)	-0.0155 (8)	-0.0170 (7)	0.0002 (7)

Geometric parameters (Å, °)

Cl1—C14	1.7394 (17)	C7—C8	1.5135 (19)
S1—C6	1.7573 (16)	С7—С9	1.5173 (19)
S1—C7	1.8182 (15)	С7—Н7	0.9800
O1—C8	1.2284 (18)	C9—C10	1.511 (2)
O2—C10	1.2129 (18)	С9—Н9А	0.9700
N1—C8	1.3489 (18)	С9—Н9В	0.9700
N1-C1	1.403 (2)	C10—C11	1.494 (2)
N1—H1	0.8600	C11—C16	1.389 (2)
C1—C2	1.386 (2)	C11—C12	1.390 (2)
C1—C6	1.394 (2)	C12—C13	1.384 (2)
C2—C3	1.377 (2)	C12—H12	0.9300
С2—Н2	0.9300	C13—C14	1.371 (2)
C3—C4	1.377 (3)	C13—H13	0.9300
С3—Н3	0.9300	C14—C15	1.381 (3)
C4—C5	1.378 (3)	C15—C16	1.376 (2)
C4—H4	0.9300	C15—H15	0.9300
C5—C6	1.386 (2)	C16—H16	0.9300
С5—Н5	0.9300		

C6—S1—C7	97.48 (7)	O1—C8—C7	122.41 (13)
C8—N1—C1	126.91 (12)	N1—C8—C7	116.00 (12)
C8—N1—H1	116.5	C10—C9—C7	113.70 (12)
C1—N1—H1	116.5	С10—С9—Н9А	108.8
C2—C1—C6	119.70 (14)	С7—С9—Н9А	108.8
C2C1N1	119.38 (14)	С10—С9—Н9В	108.8
C6—C1—N1	120.82 (13)	С7—С9—Н9В	108.8
C3—C2—C1	120.31 (16)	Н9А—С9—Н9В	107.7
С3—С2—Н2	119.8	O2—C10—C11	120.79 (14)
С1—С2—Н2	119.8	O2—C10—C9	121.44 (14)
C4—C3—C2	120.09 (16)	C11—C10—C9	117.77 (12)
С4—С3—Н3	120.0	C16—C11—C12	118.65 (14)
С2—С3—Н3	120.0	C16—C11—C10	118.96 (13)
C3—C4—C5	120.09 (17)	C12-C11-C10	122.38 (14)
C3—C4—H4	120.0	C13—C12—C11	121.08 (15)
C5—C4—H4	120.0	C13—C12—H12	119.5
C4—C5—C6	120.49 (17)	C11-C12-H12	119.5
С4—С5—Н5	119.8	C14—C13—C12	118.69 (15)
С6—С5—Н5	119.8	C14—C13—H13	120.7
C5—C6—C1	119.31 (15)	C12-C13-H13	120.7
C5—C6—S1	121.07 (13)	C13—C14—C15	121.61 (15)
C1—C6—S1	119.58 (12)	C13—C14—Cl1	118.54 (13)
C8—C7—C9	112.96 (12)	C15—C14—Cl1	119.85 (14)
C8—C7—S1	107.61 (10)	C16-C15-C14	119.17 (16)
C9—C7—S1	108.66 (10)	C16—C15—H15	120.4
С8—С7—Н7	109.2	C14—C15—H15	120.4
С9—С7—Н7	109.2	C15-C16-C11	120.77 (15)
S1—C7—H7	109.2	C15—C16—H16	119.6
O1—C8—N1	121.58 (13)	C11—C16—H16	119.6
C8—N1—C1—C2	-164.11 (15)	C9—C7—C8—N1	-172.83 (12)
C8—N1—C1—C6	19.6 (2)	S1—C7—C8—N1	-52.90 (15)
C6—C1—C2—C3	0.2 (3)	C8—C7—C9—C10	-70.81 (16)
N1—C1—C2—C3	-176.10 (16)	S1—C7—C9—C10	169.86 (10)
C1—C2—C3—C4	0.1 (3)	C7—C9—C10—O2	-5.5 (2)
C2—C3—C4—C5	-0.5 (3)	C7—C9—C10—C11	175.14 (12)
C3—C4—C5—C6	0.5 (3)	O2—C10—C11—C16	10.8 (2)
C4—C5—C6—C1	-0.2 (3)	C9—C10—C11—C16	-169.83 (14)
C4—C5—C6—S1	177.63 (15)	O2—C10—C11—C12	-167.67 (15)
C2—C1—C6—C5	-0.1 (2)	C9—C10—C11—C12	11.7 (2)
N1—C1—C6—C5	176.12 (15)	C16—C11—C12—C13	1.3 (2)
C2—C1—C6—S1	-178.03 (12)	C10-C11-C12-C13	179.77 (14)
N1—C1—C6—S1	-1.8 (2)	C11—C12—C13—C14	0.4 (2)
C7—S1—C6—C5	148.48 (15)	C12—C13—C14—C15	-1.5 (3)
C7—S1—C6—C1	-33.66 (14)	C12—C13—C14—Cl1	178.29 (12)
C6—S1—C7—C8	58.07 (11)	C13—C14—C15—C16	0.9 (3)
C6—S1—C7—C9	-179.31 (10)	Cl1—C14—C15—C16	-178.92 (14)
C1—N1—C8—O1	-169.12 (14)	C14—C15—C16—C11	0.8 (3)
C1—N1—C8—C7	12.0 (2)	C12—C11—C16—C15	-1.9 (2)
C9—C7—C8—O1	8.3 (2)	C10-C11-C16-C15	179.53 (15)

S1—C7—C8—O1 128.25 (13)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	$H \cdots A$	$D \cdots A$	D—H…A
N1—H1…O1 ⁱ	0.86	2.02	2.8812 (19)	177
C7—H7···O2 ⁱⁱ	0.98	2.54	3.443 (2)	152
C9—H9A…O1 ⁱⁱⁱ	0.97	2.59	3.485 (2)	153
C13—H13···O1 ^{iv}	0.93	2.59	3.400 (2)	145

Symmetry codes: (i) -*x*+1, -*y*+2, -*z*+1; (ii) -*x*+1, -*y*+1, -*z*+1; (iii) -*x*, -*y*+2, -*z*+1; (iv) *x*-1, *y*, *z*.

